In 2019 the Department of Environmental Protection performed a Source Water Assessment on our system. The assessment was conducted to provide information about any potential sources of contamination in the vicinity of our wells. There are twenty-eight unique potential sources of contamination identified for this system with Low to High susceptibility levels. The assessment results are available on the FDEP Source Water Assessment and Protection Program website at https://fldep.dep.state.fl.us/swapp/ or see below to request a copy.

For any other questions about this report or your drinking water, please contact:
City of Daytona Beach Utilities Department
125 Basin St., Ste. 204
Daytona Beach, FL 32114
Phone (386) 671-8824
Fax (386) 671-5938
Where Does My Water Come From and How is it Treated?

Our drinking water comes from any one of a series of 24 deep wells (>200 ft. deep) that tap into the Floridan Aquifer. This is a vast groundwater resource that stretches southward from South Carolina to a large part of the state of Florida including all of Volusia County. Although this water is very high in quality, it does contain dissolved minerals and natural organics which are essential for good health. We treat this water at the Ralph Brennan Plant through ozonation, softening, filtration, and chloramine disinfection processes. An inhibitor is added to reduce corrosion of your household plumbing. The naturally occurring fluoride content is supplemented at a level recommended by the American Dental Health Association.

Things to Know About Your Water:

Some people may be more vulnerable to contaminants in drinking water than the general population. Immuno-compromised persons such as persons with cancer undergoing chemotherapy, persons who have undergone organ transplants, people with HIV/AIDS or other immune system disorders, some elderly, and infants can be particularly at risk from infections. These people should seek advice about drinking water from their health care providers. EPA/CDC guidelines on appropriate means to lessen the risk of infection by Cryptosporidium and other microbiological contaminants are available from the Safe Drinking Water Hotline (800-426-4791).

Drinking water, including bottled water, may reasonably be expected to contain at least small amounts of some contaminants. The presence of contaminants does not necessarily indicate that the water poses a health risk. In order to ensure that tap water is safe to drink, the EPA prescribes regulations, which limit the amount of certain contaminants in water provided by public water systems. More information about contaminants and potential health effects can be obtained by calling the Environmental Protection Agency’s Safe Drinking Water Hotline at 1-800-426-4791.
Contaminants Found in all Drinking Water:
The City of Daytona Beach routinely monitors for over 80 primary and secondary contaminants in your drinking water according to Federal and State laws, rules, and regulations. The primary contaminants include inorganic compounds (mostly metals that are naturally found in the environment), volatile compounds, pesticides, PCBs, and radionuclides. Secondary contaminants include compounds associated with the aesthetic (e.g. odor, color) quality of water. Except where indicated otherwise, this report is based on the results of our monitoring for the period of January 1 to December 31, 2019. Data obtained before January 1, 2019, and presented in this report are from the most recent testing done in accordance with the laws, rules, and regulations.

The sources of drinking water (for both tap water and bottled water) include rivers, lakes, streams, ponds, reservoirs, springs, and wells. As water travels over the surface of the land or through the ground, it dissolves naturally occurring minerals and, in some cases, radioactive material, and can pick up substances resulting from the presence of animals or from human activity.

Contaminants that may be present in source water include:

(A) **Microbial contaminants**, such as viruses and bacteria, which may come from sewage treatment plants, septic systems, agricultural livestock operations, and wildlife.

(B) **Inorganic contaminants**, such as salts and metals, which can be naturally-occurring or result from urban stormwater runoff, industrial or domestic wastewater discharges, oil and gas production, mining, or farming.

(C) **Pesticides and herbicides**, which may come from a variety of sources such as agriculture, urban stormwater runoff, and residential uses.

(D) **Organic chemical contaminants**, including synthetic and volatile organic chemicals, which are by-products of industrial processes and petroleum production, and can also come from gas stations, urban stormwater runoff, and septic systems.

(E) **Radioactive contaminants**, which can be naturally occurring or be the result of oil and gas production and mining activities.

How to Read The Data:
The tables show the results of the City's water-quality analyses. The column marked “Level Detected” shows the highest results from the last time tests were performed. “Likely Sources” shows where this substance usually originates. Descriptions below explain other important details. You may find unfamiliar terms and abbreviations in this table. To help you better understand unfamiliar terms and abbreviations, the following definitions are provided:

Maximum Contaminant Level or MCL
The highest level of a contaminant that is allowed in drinking water. MCLs are set as close to the MCLGs as feasible using the best available treatment technology.

Maximum Contaminant Level Goal or MCLG
The level of a contaminant in drinking water below which there is no known or expected risk to health. MCLGs allow for a margin of safety.

Maximum residual disinfectant level or MRDL
The highest level of a disinfectant allowed in drinking water. There is convincing evidence that addition of a disinfectant is necessary for control of microbial contaminants.

Maximum residual disinfectant level goal or MRDLG
The level of a drinking water disinfectant below which there is no known or expected risk to health. MRDLGs do not reflect the benefits of the use of disinfectants to control microbial contaminants.

Action Level (AL)
The concentration of a contaminant that, if exceeded, triggers treatment or other requirements that a water system must follow.

“N/A” means not applicable.

“ND” means not detected and indicates that the substance was not found by laboratory analysis.

Parts per million (ppm) or Milligrams per liter (mg/l)
One part by weight of analyte to 1 million parts by weight of the water sample.

Parts per billion (ppb) or Micrograms per liter (µg/l)
One part by weight of analyte to 1 billion parts by weight of the water sample.

Treatment Technique (TT)
A required process intended to reduce the level of a contaminant in drinking water.

Picocurie per liter (pCi/L)
Measure of the radioactivity in water.
Microbiological Contaminants

<table>
<thead>
<tr>
<th>Contaminant</th>
<th>Dates of Sampling (mo/yr)</th>
<th>MCL Violation Y/N</th>
<th>Total Number of Positive Samples</th>
<th>MCLG</th>
<th>MCL</th>
<th>Likely Source of Contamination</th>
</tr>
</thead>
<tbody>
<tr>
<td>E. Coli*</td>
<td>01/19 - 12/19</td>
<td>N</td>
<td>1</td>
<td>0</td>
<td></td>
<td>Routine and repeat samples are total coliform positive and either is E. coli positive or system fails to take repeat samples following E. coli positive routine sample or system fails to analyze total coliform posi-</td>
</tr>
</tbody>
</table>

While the City of Daytona Beach did confirm a single E. Coli positive sample in 2019, routine and repeat samples immediately following this confirmation were found to be negative for both E. Coli and Total Coliform. As such, the City of Daytona Beach did not incur an MCL violation and the water quality was not a cause for concern.

Inorganic Contaminants

<table>
<thead>
<tr>
<th>Contaminant and Unit of Measurement</th>
<th>Dates of Sampling (mo/yr)</th>
<th>MCL Violation Y/N</th>
<th>Level Detected</th>
<th>Range of Results</th>
<th>MCLG</th>
<th>MCL</th>
<th>Likely Source of Contamination</th>
</tr>
</thead>
<tbody>
<tr>
<td>Barium (ppm)</td>
<td>04/19</td>
<td>N</td>
<td>0.00304</td>
<td>0.00304</td>
<td>2</td>
<td>2</td>
<td>Discharge of drilling wastes; discharge from metal refineries; erosion of natural deposits</td>
</tr>
<tr>
<td>Fluoride (ppm)</td>
<td>04/19</td>
<td>N</td>
<td>0.119</td>
<td>0.119</td>
<td>4</td>
<td>4</td>
<td>Erosion of natural deposits; discharge from fertilizer and aluminum factories. Water additive which promotes strong teeth when at the optimum level of 0.7 ppm</td>
</tr>
<tr>
<td>Nitrate (as Nitrogen) (ppm)</td>
<td>04/19</td>
<td>N</td>
<td>0.082</td>
<td>0.082</td>
<td>10</td>
<td>10</td>
<td>Runoff from fertilizer use; leaching from septic tanks, sewage; erosion of natural deposits</td>
</tr>
<tr>
<td>Sodium (ppm)</td>
<td>04/19</td>
<td>N</td>
<td>35.0</td>
<td>35.0</td>
<td>N/A</td>
<td>160</td>
<td>Salt water intrusion, leaching from soil</td>
</tr>
</tbody>
</table>
*The locations reported below had results during 2019 which exceeded the MCL of 80 ppb. However, the system did not incur an MCL violation, because all annual average results at all sites were at or below the MCL. Some people who drink water containing trihalomethanes in excess of the MCL over many years may experience problems with their liver, kidneys, or central nervous systems, and may have an increased risk of getting cancer.

One sample during 2019 (3009 N. Halifax, October) had a TTHM result of 91.8 ppb
One sample during 2019 (2475 S. Peninsula Dr., October) had a TTHM result of 91.0 ppb
One sample during 2019 (1250 Beville Rd., October) had TTHM results of 87.7 ppb
One sample during 2019 (1210 Jimmy Ann Dr., October) had TTHM results of 93.0 ppb

Synthetic Organic Contaminants including Pesticides and Herbicides

<table>
<thead>
<tr>
<th>Disinfectant or Contaminant and Unit of Measurement</th>
<th>Dates of Sampling (mo/yr)</th>
<th>MCL or MRDL Violation Y/N</th>
<th>Level Detected</th>
<th>Range of Results</th>
<th>MCLG or MRDLG</th>
<th>MCL or MRDL</th>
<th>Likely Source of Contamination</th>
</tr>
</thead>
<tbody>
<tr>
<td>2,4-D (ppb)</td>
<td>04/19 - 08/19</td>
<td>N</td>
<td>0.194</td>
<td>ND - 0.194</td>
<td>70</td>
<td>70</td>
<td>Runoff from herbicide used on row crops</td>
</tr>
<tr>
<td>Chlordane (ppb)</td>
<td>04/19 - 08/19</td>
<td>N</td>
<td>0.042</td>
<td>ND - 0.042</td>
<td>0</td>
<td>2</td>
<td>Residue of banned termicide</td>
</tr>
</tbody>
</table>

Stage 1 Disinfectants and Disinfection By-Products

<table>
<thead>
<tr>
<th>Disinfectant or Contaminant and Unit of Measurement</th>
<th>Dates of Sampling (mo/yr)</th>
<th>MCL or MRDL Violation Y/N</th>
<th>Level Detected</th>
<th>Range of Results</th>
<th>MCLG or MRDLG</th>
<th>MCL or MRDL</th>
<th>Likely Source of Contamination</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bromate (ppb)</td>
<td>1/19 - 12/19</td>
<td>N</td>
<td>1.95</td>
<td>ND - 9.55</td>
<td>MCLG = 0</td>
<td>MCL = 10</td>
<td>By-product of drinking water disinfection</td>
</tr>
<tr>
<td>Chlorine and Chloramines (ppm)</td>
<td>1/19 - 12/19</td>
<td>N</td>
<td>3.1</td>
<td>0.4 - 5.7</td>
<td>MRDLG = 4</td>
<td>MRDL = 4.0</td>
<td>Water additive used to control microbes</td>
</tr>
</tbody>
</table>

Stage 2 Disinfectants and Disinfection By-Products

<table>
<thead>
<tr>
<th>Contaminant and Unit of Measurement</th>
<th>Dates of Sampling (mo/yr)</th>
<th>MCL Violation (Y/N)</th>
<th>Level Detected</th>
<th>Range of Results</th>
<th>MCLG</th>
<th>MCL</th>
<th>Likely Source of Contamination</th>
</tr>
</thead>
<tbody>
<tr>
<td>Haloacetic Acids (HAA5) (ppb)</td>
<td>1/19-12/19</td>
<td>N</td>
<td>32</td>
<td>27.1-43.0</td>
<td>N/A</td>
<td>60</td>
<td>By-product of drinking water disinfection</td>
</tr>
<tr>
<td>Total Trihalomethanes* (TTHM) (ppb)</td>
<td>1/19-12/19</td>
<td>N</td>
<td>66.3</td>
<td>34.8-93.0</td>
<td>N/A</td>
<td>80</td>
<td>By-product of drinking water disinfection</td>
</tr>
</tbody>
</table>

*The locations reported below had results during 2019 which exceeded the MCL of 80 ppb. However, the system did not incur an MCL violation, because all annual average results at all sites were at or below the MCL. Some people who drink water containing trihalomethanes in excess of the MCL over many years may experience problems with their liver, kidneys, or central nervous systems, and may have an increased risk of getting cancer.

One sample during 2019 (3009 N. Halifax, October) had a TTHM result of 91.8 ppb
One sample during 2019 (2475 S. Peninsula Dr., October) had a TTHM result of 91.0 ppb
One sample during 2019 (1250 Beville Rd., October) had TTHM results of 87.7 ppb
One sample during 2019 (1210 Jimmy Ann Dr., October) had TTHM results of 93.0 ppb
Lead and Copper (Tap Water)

<table>
<thead>
<tr>
<th>Contaminant and Unit of Measurement</th>
<th>Dates of Sampling (mo/yr)</th>
<th>AL Exceeded (Y/N)</th>
<th>90th Percentile Result</th>
<th>No. of sampling sites exceeding the AL</th>
<th>MCLG</th>
<th>AL (Action Level)</th>
<th>Likely Source of Contamination</th>
</tr>
</thead>
<tbody>
<tr>
<td>Copper (tap water) (ppm)</td>
<td>6/17-8/17</td>
<td>N</td>
<td>0.05</td>
<td>0</td>
<td>1.3</td>
<td>1.3</td>
<td>Corrosion of household plumbing systems; erosion of natural deposits; leaching from wood preservatives</td>
</tr>
<tr>
<td>Lead (tap water) (ppb)</td>
<td>6/17-8/17</td>
<td>N</td>
<td>2.1</td>
<td>0</td>
<td>0</td>
<td>15</td>
<td>Corrosion of household plumbing systems; erosion of natural deposits</td>
</tr>
</tbody>
</table>

Unregulated Contaminants

<table>
<thead>
<tr>
<th>Contaminant and Unit of Measurement</th>
<th>Dates of Sampling (mo/yr)</th>
<th>Level Detected (average)</th>
<th>Range</th>
<th>Likely Source of Contamination</th>
</tr>
</thead>
<tbody>
<tr>
<td>Manganese (ppm)</td>
<td>11/26/18</td>
<td>0.0017</td>
<td>0.0017</td>
<td>Natural occurrence from soil leaching</td>
</tr>
<tr>
<td>HAA6Br (ppb)</td>
<td>11/26/18</td>
<td>4.975</td>
<td>4.5 - 5.4</td>
<td>Byproduct of drinking water disinfection</td>
</tr>
<tr>
<td>HAA9 (ppb)</td>
<td>11/26/18</td>
<td>28.5</td>
<td>25 - 33</td>
<td>Byproduct of drinking water disinfection</td>
</tr>
</tbody>
</table>

The City of Daytona Beach has been monitoring for unregulated contaminants (UCs) as part of a study to help the U.S. Environmental Protection Agency (EPA) determine the occurrence in drinking water of UCs and whether or not these contaminants need to be regulated. At present, no health standards (for example, maximum contaminant levels) have been established for UCs. However, we are required to publish the detected analytical results of our UC monitoring in our annual water quality report.

For the complete list of results, including the non-detected contaminants, contact Robin Cook at 386-671-8885 or cookrobin@codb.us.

If you would like more information on the EPA's Unregulated Contaminants Monitoring Rule, please call the Safe Drinking Water Hotline at (800) 426-4791.
Just a reminder:

Water Wisely!

Landscape Irrigation in Volusia County is limited to 4:00 p.m. to 10:00 a.m.

Once per week Eastern Standard Time
ODD Number addresses: Saturday
EVEN: Number Addresses: Sunday

Twice per week, Daylight Savings Time
ODD Number addresses: Wednesday and Saturday
EVEN: Number Addresses: Thursday and Sunday

Applies to private wells, lakes and ponds and city water.

Inside a typical home, about 40% of the water used is due to toilet flushing. Do you know that the City of Daytona Beach sponsors a rebate program that encourages residential water customers to replace older, inefficient toilets with new, low-flow models? If you qualify, you will be credited $50 on a future water bill.

To be eligible for the rebate program, you must meet the following qualifications:

- The address of the residence must be within Daytona Beach city limits.
- The toilet that is being replaced must have been manufactured prior to 1992. 1992 is when the National Energy Policy Act went into effect, mandating that toilets be manufactured to use only 1.6 gallons per flush rather than the 3.5 – 7.0 gallons per flush of older models.
- The toilet replaced cannot be reused and must be disposed of properly.

A Toilet Rebate Application can be obtained by calling (386) 671-8824, and must then be completed and sent with the original receipt attached for the purchase of the replacement toiled to:

Toilet Rebate
Administration Building
3651 LPGA Blvd.
Daytona Beach, FL 32124

After receipt of all paperwork, eligible participants will be credited with a $50 rebate on their bill within four to eight weeks, depending on the billing cycle.

This is a residential rebate offer and is limited to two toilet replacements per address. For commercial requests, please call (386) 671-8821 for details.

By participating in the City of Daytona Beach’s Toilet Rebate Program, the customer agrees to an installation verification visit, if requested by the City.

Old toilets use up to 4 times more water than newer low flow toilets.
Did you know? *The average adult needs only 2.5 quarts* of water to maintain health, but *each person in Florida uses 120 to 150 gallons of water per day*. That’s why it’s important to use water wisely, at home, work or at school. By conserving water today, we can do our part to keep water pure and plentiful for future generations.

INDOOR

Kitchen — When washing dishes by hand, don’t let the water run. Fill one basin with wash water and the other with rinse water.

Laundry Room — When doing laundry, match the water level to the size of the load.

Bathroom — Put food coloring in your toilet tank. If it seeps into the bowl without flushing, there’s a leak—fix it and start saving gallons.

General Indoor — Monitor your water bill for unusually high use. Your bill and water meter are tools that can help you discover leaks.

OUTDOOR

Lawn Care — Adjust your lawn mower to the height of 1.5 to 2 inches. Taller grass shades roots and hold soil moisture better than short grass, leading to a decrease in the need to water.

Pool — Make sure your swimming pools, fountains and ponds are equipped with recirculating pumps.

General Outdoor — Use a commercial car wash that recycles water or wash your car on the lawn, and you’ll water your grass at the same time. Make sure you use a low phosphate soap that you can find at your local supermarket such as Target or Walmart.
Additional Information

Attend the City Commission Meetings – held the first and third Wednesday of each month at 6:00 PM Commission Chambers, Daytona Beach City Hall, 301 South Ridgewood Avenue.

Visit the Daytona Beach website at: http://www.ci.Daytona-Beach.Fl.us/

To report water line breaks and emergencies – call (386) 671-8815 (all hours)

Department of Health in Volusia County – call the Environmental Health Engineering Section, (386) 274-0546